Type: \(\displaystyle B^{1}_2\) (Dynkin type computed to be: \(\displaystyle B^{1}_2\))
Simple basis: 2 vectors: (1, 2), (0, -1)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: 0
simple basis centralizer: 0 vectors:
Number of k-submodules of g: 1
Module decomposition, fundamental coords over k: \(\displaystyle V_{2\omega_{2}}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 110(-1, 0)(1, 0)g_{1}
g_{3}
g_{-2}
g_{4}
-h_{2}
2h_{2}+h_{1}
g_{-4}
g_{2}
g_{-3}
g_{-1}
\varepsilon_{1}-\varepsilon_{2}
\varepsilon_{1}
-\varepsilon_{2}
\varepsilon_{1}+\varepsilon_{2}
0
0
-\varepsilon_{1}-\varepsilon_{2}
\varepsilon_{2}
-\varepsilon_{1}
-\varepsilon_{1}+\varepsilon_{2}

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 1
Heirs rejected due to not being maximally dominant: 0
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 0
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
Parabolically induced by A^{1}_1
Potential Dynkin type extensions: